Invented by William D. Meadow, Locatorx Inc

The Market for Global Resource Locator Labels: A Growing Trend in the Digital Era In today’s digital age, the internet has become an integral part of our lives. From shopping to socializing, we rely heavily on online platforms for various activities. However, with the vast amount of information available on the internet, it can sometimes be challenging to navigate and find what we are looking for. This is where Global Resource Locator (URL) labels come into play. A Global Resource Locator, commonly known as a URL, is a unique address that identifies a specific webpage or resource on the internet. It serves as a digital address, allowing users to access websites, documents, images, and other online content. URL labels play a crucial role in organizing and categorizing information on the internet, making it easier for users to find and access the content they need. The market for URL labels has been steadily growing over the years, driven by the increasing need for efficient and user-friendly online experiences. As more businesses and individuals establish an online presence, the demand for well-structured and easily accessible websites has skyrocketed. URL labels provide a standardized way to organize web content, ensuring that users can quickly locate and access the information they are seeking. One of the key factors driving the market for URL labels is the rise of search engine optimization (SEO) strategies. SEO is a set of techniques used to improve a website’s visibility and ranking on search engine result pages. URL labels play a vital role in SEO, as search engines analyze them to determine the relevance and quality of a webpage. Websites with well-optimized URL labels are more likely to rank higher in search results, attracting more organic traffic and potential customers. Furthermore, the increasing popularity of mobile devices has also contributed to the growth of the URL label market. With smartphones and tablets becoming the primary means of accessing the internet, it is essential for websites to have responsive designs and mobile-friendly URLs. Mobile optimization has become a crucial aspect of web development, and URL labels play a significant role in ensuring a seamless user experience across different devices. In recent years, there has also been a rise in the use of URL shorteners, which provide compact and memorable URLs for sharing on social media platforms or in marketing campaigns. URL shorteners offer a convenient way to share lengthy web addresses, making them more visually appealing and easier to remember. This trend has further fueled the market for URL labels, as businesses and individuals seek to create concise and catchy URLs for their online content. As the market for URL labels continues to grow, there are several emerging trends worth noting. One such trend is the use of branded URLs, where businesses incorporate their brand name or keywords into the URL label. Branded URLs not only enhance brand recognition but also improve search engine visibility and user trust. Another emerging trend is the use of descriptive URLs, which provide a clear indication of the content or purpose of a webpage. Descriptive URLs help users understand what to expect when clicking on a link, increasing click-through rates and reducing bounce rates. This trend aligns with the growing emphasis on user experience and user-centric web design. In conclusion, the market for Global Resource Locator (URL) labels is experiencing significant growth in the digital era. As businesses and individuals strive to enhance their online presence and improve user experiences, the demand for well-structured and easily accessible websites is on the rise. URL labels play a crucial role in organizing web content, optimizing search engine visibility, and ensuring a seamless user experience. With emerging trends such as branded and descriptive URLs, the market for URL labels is expected to continue expanding in the coming years.

The Locatorx Inc invention works as follows

A global resource location (GRL), device can be used for tracking a physical asset. The GRL device is a semiconductor with a timer and processor. The semiconductor chip may generate a timing device. The GRL device may include a communications device, a blockchain and a memory that is in logical contact with the processor. Memory can be used to store an identifier as well as a public and private key. The communication device is able to communicate wirelessly with a micro-sized timing device and the blockchain. Each authenticated source of radio can be placed at a specific reference location. The communication device is able to receive wireless timing signals coming from at least three radio sources. The GRL device may be attached to a product.

Background for Global resource locator label

A simple analysis of recent news shows that it is very helpful to know who is in a defined area, such as a border or a secure area, in order to combat terrorism. Until now, there has been no efficient and cost-effective way to gather such information. A person can travel freely within the boundaries of a Spatial Domain once they are admitted. It is also difficult to determine who an individual admitted to a Spatial domain has been in close proximity with.

It is well known that passports are used to gain entry within a country’s border. It is also known that a security badge containing an image of the user can be used to gain entry to a restricted area. It is difficult to determine where and when a person with a passport or security badge traveled within the defined boundaries. It’s also difficult to determine who a person has come into contact while within the defined boundaries.

Location-based technology is another area that has grown in popularity over the last decade. Many applications now include location-based functionality. Smartphones, for example, include a geolocation feature if they are unable to receive GPS signals. Some of these applications for Smartphones rely on this ability as described in U.S. Pat. No. 5,945,948.? The Smartphone alone is not reliable or secure for tracking an asset.

Radio-frequency (RFID), is an example wireless data transfer for automatically identifying and tracking tags on objects. RFID devices were viewed by many as an alternative to barcodes, because RFID tags allowed a reader to wirelessly query the tag and then have the tag send back the information stored on the semiconductor chip in the tag. RFID tags can be used by readers within close proximity to transmit pre-stored data, but they are usually limited to communication inside a home or building.

ISO/IEC 20244″ specifies how data is stored in barcodes and/or RFID tags and then digitally signed. The standard’s purpose is to provide a method that can be used by services and data carriers to verify data integrity and originality in offline applications. ISO/IEC 20248 can also be referred as a ‘DigSig’. This is a digital signature that has a low bit count. ISO/IEC 20248 is also an interoperable and effective method for exchanging data messages between Internet of Things (IoT) and Machine to Machine [M2M] Services. Intelligent agents within these services can authenticate data message and detect data tampering. There are still some limitations in RFID technology implementations and frameworks which have made it difficult to add value. One of these is that RFIDs cannot self-locate.

Bluetooth Smart, a new version of Bluetooth that is designed to reduce power consumption and costs while maintaining communication capabilities comparable to the traditional Bluetooth protocol, has been adopted as a data transmission protocol.

Bluetooth can be viewed as a standard wireless technology for exchanging data across short distances using short-wavelength radio waves (using the ISM band between 2.4 and 2.485 GHz), from mobile and fixed devices, and building Personal Area Networks (PANs). Bluetooth is managed by the Bluetooth Special Interest Group, which includes more than 25,000 companies from the fields of telecommunications, computing, networking and consumer electronics. This level of adoption may allow billions of devices to support Bluetooth Low Energy, which can enable a variety of device types and useful apps. It may become more desirable to track Bluetooth-enabled devices as Bluetooth usage increases. It could also be helpful to have functionality on other Bluetooth devices in order to find missing items.

The Internet of Things (IoT) is experiencing a rapid growth in the market due to the convergence of various technologies that allow low-cost, low-power transmission of data among ‘things. The Internet of Things is generally seen as a network of physical ‘things’. These objects are embedded with electronic components, software, sensors and network connectivity that allow them to collect and share data. It allows objects that are embedded with electronics, software, sensors, and network connectivity to be sensed remotely and controlled across existing networks, resulting in increased efficiency, accuracy, and economic benefits. The embedded computer system of each thing allows it to be uniquely identified, but also allow the device to interact with existing Internet infrastructure. There is no reliable or miniature method to locate IoT “things”. “There is no reliable method by which the IoT?things?

Location Based Services+” is the capability to open or close specific data objects using location and/or timing as (controls or triggers) and/or as part of complex cryptographic keys or hashing system and the data that they allow access to. Today, location-based services are used in everything from smart weapons to control systems. These services are used billions of times every day, and they may be the most widely used application-layer framework for computing today. The location data provided is not authenticated. “In the age of IoT, it is risky to ask or tell an IoT device that they should take action or report data if they do not know their actual location.

There are many strategies and technologies that can be used to locate objects inside. The Global Positioning System, which is a satellite-based system, loses power inside due to signal attenuation from construction materials. This affects the coverage required for receivers of at least four satellites. The multiple reflections on surfaces also cause uncontrollable error due to multi-path propagation. The same effects degrade all solutions that use electromagnetic waves to locate indoors, from indoor transmitters and indoor receivers. To compensate for this problem, physical and mathematical methods were applied.

Indoor positioning systems (IPS) are used to locate people or objects inside a building by using radio waves, magnetic field, acoustic signal, or any other sensory data collected from mobile devices. There are a number of commercial systems available, but no standard exists for an IPS. The system design must consider that three independent measurements will be needed to find an unambiguous location (see trilateration).

Indoor Positioning Systems utilize different technologies. These include distance measurements to nearby anchor points (nodes that have known positions, such as Wi-Fi access point), magnetic positioning and dead reckoning. The systems can either locate mobile devices or tags, or they can provide the ambient location and environmental context that devices need to be sensed. Localized IPSs have led to design fragmentation. Systems use a variety of optical, radio or even acoustic technology. To determine precise location, the system must use highly accurate clocks in order to calculate TDOA Time Delay Of Arrival. This is similar to how GPS satellites provide this information to ground units for processing and determining location.

No. No. Watters, et. al. 5,982,324 Another problem is that the clock on a typical cellular mobile terminal may not be accurate and have a tendency of drifting, which is commonly known as clock-drift. The terminal may not be able to make accurate time measurements. This results in an incorrect time and location determination. The drift error increases the longer you use the mobile terminal clock.

As referenced in US2014/0375505A1, TV signals can generate a location for a receiver was taught by U.S. Patent. No. No. The art includes the use of DTV for location, customizing the DTV signal and the hybridization between DTV broadcast location technology with other network or mobile-based technologies.

U.S. Pat. No. Stilp, and others, in 7,440,762, provide examples of infrastructure-based systems (or network-based systems) for determining the locations of Wireless mobile units. Maloney et. al. describe the use of collateral data to enhance or even enable location determination for further applications of infrastructure-based systems. No. No. Nos. Nos.

U.S. Pat. No. No. 6,201,499 describes a method of estimating the formation of hyperbolas based on the TDOA calculation between three or more receiving sensor. The intersection of two or three independently generated hyperbolas from three or four receiving sensors is used to estimate the transmitter location. In Statistical Theory of Passive Location Systems, the methods for determining RF transmitter location based on arrival time differences are described in more detail. Don J. Torrieri, IEEE Transactions on Aerospace and Electronic Systems Vol. AE, 5-20, No. March 1984, pages 183-198) which is expressly incorporated herein by reference.” “(183-198)” which is explicitly incorporated by reference.

Alongside the advent of large numbers of simple hackable computer (aka IoT Devices), has created well-deserved concerns which have slowed down or impeded adoption of technology in environments where it can provide useful services.

Our disclosure will explain how we will implement the required security framework using open source and customized development in our apparatus. We will also provide new methods for resolving concerns and providing a trusted environment for machines that can improve our lives. We share the history of some solutions deployed in this M2M/IoT era.

Security counterfeiting: There’s a major global counterfeiting issue that disrupts normal commerce and free exchange of products. Imitating something is commonly accepted as counterfeiting. Counterfeit goods are counterfeit replicas of real products. Counterfeit goods are sometimes produced to exploit the higher value of the imitation. “The word counterfeit is often used to describe both the forgeries and imitations of currency and documents as well as clothing, handbags and shoes, pharmaceuticals and aviation and automobile parts as watches, software, artwork, toys, movies, and electronic (both parts and completed products).

Security Authentication, as a term is commonly used to describe the goal of providing authentication. It is the process of verifying the truthfulness of an attribute claimed by an entity to be true. In contrast to identification, which is the act of declaring or indicating an assertion purporting to attest to a person’s or thing?s identity, the authentication process actually confirms that identity. While a vendor may sell branded products, he or she might not have proof that each step of the supply chain has been authenticated. Documentation or external affirmations are another type of authentication. The rules of evidence in criminal courts often require that the chain of custody be established. It can be done by a written log of evidence or testimony from the detectives and forensic staff who handled it.

Security Packaging is generally understood to be a technique for minimizing counterfeiting. Security printing and authentication seals can be used to indicate that a package or its contents are genuine. The packages can also include anti-theft measures, such as RFID tags or electronic article surveillance tags. These devices can be detected or activated by exit devices and require special tools to deactivate.

Click here to view the patent on Google Patents.